
Tracing and Validating Goal Aspects

Yijun Yu
The Open Univ., UK
y.yu@open.ac.uk

Nan Niu
Univ. of Toronto, Canada
nn@cs.toronto.edu

Bruno Gonźalez-
Baixauli
Univ. of Valladolid, Spain
bbaixauli@infor.uva.es

William Candillon
Univ. of Lille, France
wcandillon@elv.enic.fr

John Mylopoulos
Univ. of Toronto, Canada
jm@cs.toronto.edu

Steve Easterbrook
Univ. of Toronto, Canada
sme@cs.toronto.edu

Julio Cesar Sampaio do
Prado Leite
PUC-Rio, Brazil
julio@inf.puc-rio.br

Gilles Vanwormhoudt
Univ. of Lille, France
vanwormhoudt@enic.fr

Abstract

Aspects promote a clear separation of concerns so that
tangled and scattered concerns are modularized throughout
software development. We propose a framework to trace as-
pects identified during goal-oriented requirements analysis
to code and testing. Two types of checks are performed to
validate the resulting system in light of stakeholders’ cross-
cutting concerns. One ensures that systems with and with-
out aspects have the same functionality defined by the hard
goals. The other checks whether the weaved system with
aspects indeed improves system qualities in terms of the de-
gree of softgoal satisfaction. We demonstrate the approach
using an open-source e-commerce platform.

1 Introduction
Aspect-oriented programming (AOP) modularizes cross-

cutting concerns so that programs’ evolution is less prob-
lematic [11]. Uncovering aspects from system implementa-
tion can be supported by using program analysis techniques
such as aspect mining and refactoring [17]. A common lim-
itation to these techniques is that it is hard to validate the
modularized code aspects against their very purposes of ex-
istence: Are they required or designed to be there?

Thus, early aspects – the concerns that crosscut an arti-
fact’s dominant separation-of-concern criterion in the early
stages of the software life cycle [3] – are studied to help
the stakeholders and designers consider aspects early on,
before these crosscutting concerns start to clutter the code
artifacts [15, 16, 20].

Although various approaches have been proposed to dis-
cover and modularize aspects at the requirements level [1],
few address the validation and traceability issues of the
identified early aspects. Specifically, it is of great interest
to trace how early aspects manifest themselves to code and
testing, and to validate the resulting system in light of the

stakeholder concerns that crosscut the problem domain.
In our previous work [20], we developed a framework

for identifying and weaving candidate aspects during goal-
oriented requirements analysis [18]. Goal aspects are cap-
tured as the operationalizations of softgoals and the rela-
tions to functional goals. They are suited to be implemented
as code aspects, but developers may choose other means to
address these crosscutting concerns. Even in the latter case,
it is desirable to keep early aspects modularized so that one
does not have to recover them from the code at a later date.

In this paper, we propose a framework to trace and val-
idate the identified goal aspects [20]. Early aspects are ei-
ther naturally mapped to code aspects, or recorded as is-
sues to directly advise testing. Aspect testing, therefore,
is guided by stakeholder goals. In our approach, aspects
are intended to enhance system qualities by interacting with
multiple system units, while preserving the functionalities
defined by hard goals.

The goals of our work are twofold. By separating cross-
cutting concerns throughout requirements, implementation,
and testing phases, we achieve a high degree of modular-
ity and traceability in software development. By validating
implementation against stakeholder concerns, we achieve a
high level of software quality and user satisfaction. To those
ends, this paper provides several contributions:

1. We propose an approach to tracing goal aspects to im-
plementation and testing;

2. We define criteria and means of measuring aspects as
separate metrics to be weaved into base modules; and

3. We present the preliminary results of applying the ap-
proach to an open-source platform written in PHP.

2 Aspects in goal models
A requirements aspect is a stakeholder concern that cuts

across other requirement-level concerns or artifacts of the

Figure 1. Illustration of goal aspects in media shop using i∗ notations [19]

author’s chosen organization [3]. To interpret the notions
involved in aspect orientation from a requirements perspec-
tive, we follow the metaphor that every requirements aspect
acts as a service provider to some base modules [13].
• Advice defines the content of the service that an aspect

provides. It describeswhat the service is about.
• Join points are points in the base with which an aspect

interacts. They describewherethe service is provided.
• Pointcut represents a set of join points. It describes

thesituational patternsof an aspect’s service.
• Weaving is the process of coordinating service

providers (aspects) and consumers (base require-
ments). It describeswhenandhow the service occurs.

In addition, the purpose of a requirements aspect de-
scribeswhy the service is needed in the first place. Since
identifying aspects too early is counterproductive [14],
some approaches deal with structured models, such as goal
graphs [20] or problem frames [9].

Organizational goals lead to requirements. Goals jus-
tify and explain the presence of requirements, while pro-
viding the baseline for validating stakeholder concerns [18].
Goal modeling frameworks distinguish betweenhard (func-
tional) goals– states that actors can attain – andsoftgoals,
which can be satisfied only to certain degrees. Aspects in
goal models can be discovered using the correlations from
hard goals to softgoals along with a goal eliciting and re-
finement process of a V-shape goal graph [20].

As a running example, Figure 1 shows two goal aspects –
security and usability – in the media shop study [5, 20]. The
top level softgoals are captured as goal aspects. The aspect
weaving is achieved by composing the advising tasks with
the functional tasks of effected hard goals. Such a weaving
helps remove the dotted arrows in Figure 1 so that scala-
bility of the goal model is improved. As an example, the

aspect “Customization [language]” is operationalized into
an advising task “Translate [language, NLS]”, meaning that
the media shop is advised to translate occurrences of natural
language strings (NLS) into the desired language. This ad-
vice crosscuts all hard goals that display Web pages. Basic
functionalities (e.g., “Informing” and “Reporting”) defined
by hard goals via functional tasks shall not be changed,
though, by weaving such a usability aspect.

3 An aspect tracing and validating framework

Figure 2 shows the process of aspect tracing and validat-
ing. Advising tasks, shown in the upper part of the figure,
are modularized and weaved into goal models.

Key concepts of AOP implementation are depicted in the
middle of Figure 2. Functional modules (f) and code as-
pects (advice+ pointcut) are derived from functional and
advising tasks respectively. The weaved system (f ◦ a) is

Figure 2. Process overview

Table 1. Tracing the security (S) and usability (U) aspects in an osCommerce media shop

Concept Q7 phpAspect Softgoal Validation
aspect (S) <aspect>::Security [system] aspect Security Use PHPUnit to generate unit testing

pointcut (S) <= + * [page] call(Page->goTo($arg2)) aspects to verify http authentication

<= + * [cart] exec(Cart->*(*)) and page redirection.

advice (S) { & Redirect [login] } checkCredentials {... } Validation result:
{ & SSL [connection] } checkSSL {... } security ensured.

aspect (U) <aspect>::Usability [language] aspect Usability Language Use both the pspell testing harness

pointcut (U) <= + * [page] call(Page->*printf(*)) and a Spanish tester to check the

<= + * [date] call(Data->strftime($arg2)) correctness of language translation,

<= + * [amount] exec(Amount->display($arg2)) date display format, and currency

advice (U) { & Translate [language, NLS] } translatePage {... } conversion.

{ & Display [format, date] } dateTimeFormat {... } Validation result:
{ & Convert [currency, amount] } convertCurrency {... } usability enhanced.

obtained by composing advice (a) with bases according to
the pointcut description (p). Some early aspects may not
be mapped to code at all. For example, a typical perfor-
mance requirement might state that the system shall com-
plete a task within 2 seconds. These aspects play a key role
in monitoring the system’s behavior, and shall not be lost
in software development. We record them as quality issues
to enable traceability, but the discussion of handling these
quality issues is beyond the scope of this paper. The success
criteria for aspects are specified int, which gathers quality
metrics and shares the same pointcut witha. It is important
to incorporate the metricst so that one can measure system
qualities with (f ◦ a ◦ t) and without (f ◦ t) aspects.

System validation is shown in the lower part of Fig-
ure 2. The weaved system (f ◦ a) is subject to two tests.
The first test ensures that systems with and without as-
pects have the same functionality defined by hard goals:
H(f) = H(f ◦ a). Existing testing mechanisms, such as
unit testing, can be reused to validate whether the weaved
system satisfies the functional requirements. The second
test checks whether the weaved system indeed improves
system qualities in terms of the degree of softgoal satis-
faction: S(f ◦ t) < S(f ◦ a ◦ t). Our approach enables
both forward and backward tracing of crosscutting concerns
throughout the software life cycle.

Table 1 presents the preliminary results of applying the
framework to osCommerce [2], an open-source platform on
which media shop development can be based. Goal as-
pects are represented in Q7 [12], a pseudo programming
language that captures the structure of requirements goal
graphs, while incorporating aspect orientation. In Table 1,
the security (S) goal aspect redirects unauthorized users to
the login page, and requires all shopping cart operations
to be performed in an SSL mode. Usability (U) is AND-
decomposed into 3 parts: natural language strings (NLS)
translation, date formatting, and currency conversion.

We aim to equip developers with a competent framework
to implement goal aspects as code aspects. We worked out

phpAspect [4], a solution for AOP in PHP, where both the
source program and the aspect modules are XMLized into
abstract syntax trees, which are weaved through customized
XSLT stylesheets. The woven XML syntax trees are trans-
formed into the target PHP program via unparsing XSLT
stylesheets [21]. In Table 1, the traces between goal as-
pects and code aspects can be readily spotted. Specifically,
we map goal’s topics into parameterized pointcuts, and
map softgoal’s operationalizations into advices. Although
a one-to-one correspondence exists between the name of a
goal aspect and that of a code aspect in Table 1, many-to-
many mappings are expected and more advanced traceabil-
ity mechanisms need to be sought in more general cases.

Validation in our approach ensures that system function-
alities are preserved and system qualities are enhanced by
weaving aspects into base modules. The unit test cases of
the functional tasks can be reused without any change for
checking the functionalities of the weaved system. For ex-
ample, the shopping cart sum computation must be the same
regardless of which natural language being used by the me-
dia shop customer. On the other hand, certain qualities in a
system with weaved aspects must outperform the one with-
out aspects, so that the effort of managing aspects can be
justified. Measuring quality attributes typically presents an
obstacle to traditional testing mechanisms, since softgoals
are not always easy to metricize. Our effort of modeling
aspects early in the requirements pays off here. The results
from goal-oriented analysis, including the quality metrics,
the advising task and pointcut of goal aspects, can be reused
and extended to check the degree of softgoal satisfaction.
Key steps and initial results of validating goal aspects from
the running example are highlighted in Table 1. It is our on-
going work to carry out automated tests more thoroughly.

4 Discussion and conclusions
Grundy [8] and Rashidet al [16] are among the earli-

est who recognize the advantage of aspects for reasoning
about component-based software at the requirements level.

In comparing the related work listed in a literature survey of
early aspects [13], our key contribution brings early aspects’
traceability links and validation together. In [6], traces be-
tween early aspects and designs are set up by comparing
naming conventions, term co-occurrences, etc. It is not
clear how traceability through such queries can be verified,
as the leap from design to implementation may distort the
precision. Our work ameliorate the problem in that we ex-
plicitly rely on the decomposition and contribution links in
goal models to build traceability among goals and aspects.

The work of Cleland-Huanget al. [7] extracts non-
functional requirements (NFRs) based on information re-
trieval techniques. The strength of traceability is quantified
as precision and recall of the keyword-based search. When
naming conventions mismatches the functionality specified
in the program, our approach may improve the precision
through the semantics of executed test cases.

In [10], proof obligations were introduced to formalize
the validation of aspectual requirements in programs with
well-defined axiomatic semantics. For the quality attributes
that do not have a clear-cut answer to satisfaction, it is nec-
essary to validate whether and how much the system can be
improved after weaving the aspects. For example, instead of
proving a word is Spanish, we showed how well a Spanish
user understood it. We believe our approach complements
proof obligations in validating requirements aspects.

In this paper, we have proposed a framework to inves-
tigate how the aspects discovered from requirements goal
models can be validated and traced throughout the software
life cycle. We assumed only NFRs are traced into aspects,
and aspects’ weaving does not change base module’s func-
tionality defined by the hard goal. We presented the initial
investigation of the approach to reengineering a public do-
main e-commerce platform. Our work also verified the ini-
tial AOP claim: It is natural to implement the globally con-
cerned NFRs as aspects that cut across the subsystems [11].

Our future work includes thoroughly checking the goal
aspects in osCommerce so that the scalability issue can be
addressed. Also of interest would be extending the ap-
proach to incorporate with code aspects that are derived
from functional requirements, and goal aspects that mani-
fest themselves in other forms than code aspects, such as
quality issues, functions, design decisions, and the like.

Acknowledgments. We would like to thank invaluable dis-
cussions and feedback from our colleagues: Robin Laney,
Bashar Nuseibeh at the Open University, and Eric Yu, Rick
Salay at the University of Toronto.

References

[1] Early aspects portal. Available at http://www.early-
aspects.net, Last accessed on May 30, 2007.

[2] osCommerce. Available at http://www.oscommerce.org,
Last accessed on May 30, 2007.

[3] E. Baniassad, P. C. Clements, J. Araújo, A. Moreira,
A. Rashid, and B. Tekinedoğan. Discovering early aspects.
IEEE Software, 23(1):61–70, Jan/Feb 2006.

[4] W. Candillon. Goodle summer of code.Available at
http://code.google.com/soc/php/about.html, Last accessed
on May 30, 2007.

[5] J. Castro, M. Kolp, and J. Mylopoulos. Towards
requirements-driven information systems engineering: The
Tropos project.Information Systems, 27(6):365–389, 2002.

[6] S. Clarke and E. Baniassad.Aspect-Oriented Analysis and
Design: The Theme Approach. Addison-Wesley, 2005.

[7] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc. The
detection and classification of non-functional requirements
with application to early aspects. InIntl. Requirements En-
gineering Conf., pages 39–48, 2006.

[8] J. C. Grundy. Aspect-oriented requirements engineering for
component-based software systems. InIntl. Symp. on Re-
quirements Engineering, pages 84–91, 1999.

[9] C. B. Haley, R. C. Laney, and B. Nuseibeh. Deriving se-
curity requirements from crosscutting threat descriptions. In
Intl. Conf. on Aspect-Oriented Software Development, pages
112–121, 2004.

[10] S. Katz and A. Rashid. From aspectual requirements to
proof obligations for aspect-oriented systems. InIntl. Re-
quirements Engineering Conf., pages 48–57, 2004.

[11] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. InEuropean Conf. on Object-Oriented Pro-
gramming, pages 220–242, 1997.

[12] J. Leite, Y. Yu, L. Liu, E. Yu, and J. Mylopoulos. Quality-
based software reuse. InIntl. Conf. on Advanced Informa-
tion Systems Engineering, pages 535–550, 2005.

[13] N. Niu, S. Easterbrook, and Y. Yu. A taxonomy of require-
ments aspects. InEarly Aspects Wkshp at AOSD, 2007.

[14] B. Nuseibeh. Crosscutting requirements. InIntl. Conf. on
Aspect-Oriented Software Development, pages 3–4, 2004.

[15] A. Rashid, A. Moreira, and B. Tekinerdogan. Early as-
pects: aspect-oriented requirements engineering and archi-
tecture design (guest editorial).IEE Software, 151(4):153–
155, 2004.

[16] A. Rashid, P. Sawyer, A. Moreira, and J. Araújo. Early as-
pects: A model for aspect-oriented requirements engineer-
ing. In Intl. Requirements Engineering Conf., pages 199–
202, 2002.

[17] A. van Deursen, M. Marin, and L. Moonen. Aspect mining
and refactoring. InWkshp on Refactoring: Achievements,
Challenges, Effects at WCRE, 2003.

[18] A. van Lamsweerde. Goal-oriented requirements engineer-
ing: A guided tour. InIntl. Symp. on Requirements Engi-
neering, pages 249–262, 2001.

[19] E. Yu. Towards modeling and reasoning support for early-
phase requirements engineering. InIntl. Symp. on Require-
ments Engineering, pages 226–235, 1997.

[20] Y. Yu, J. S. P. Leite, and J. Mylopoulos. From goals to as-
pects: discovering aspects from requirements goal models.
In Intl. Requirements Engineering Conf., pages 38–47, 2004.

[21] Y. Yu et al. osCommerce’s phpAspect report.Available at
http://www.cs.toronto.edu/˜yijun/aspectPHP, Last accessed
on May 30, 2007.

