
 1

Security Requirements Engineering for

Evolving Software Systems: a Survey

Armstrong NHLABATSI* Bashar NUSEIBEH Yijun YU
Department of Computing, The Open University

Walton Hall, Milton Keynes, MK7 6AA
Email: {a.nhlabatsi, b.nuseibeh, y.yu}@open.ac.uk

Abstract

Long-lived software systems often undergo evolution over an extended period of time. Evolution of

these systems is inevitable as they need to continue to satisfy changing business needs, new regulations

and standards, and the introduction of novel technologies. Such evolution may involve changes that

add, remove, or modify features; or that migrate the system from one operating platform to another.

These changes may result in requirements that were satisfied in a previous release of a system not

being satisfied in its updated version. When evolutionary changes violate security requirements, a

system may be left vulnerable to attacks. In this paper we review current approaches to security

requirements engineering and conclude that they lack explicit support for managing the effects of

software evolution. We then suggest that a cross fertilisation of the areas of software evolution and

security engineering would address the problem of maintaining compliance to security requirements of

software systems as they evolve. We conclude the paper with a research agenda that highlights

research issues that may need to be addressed.

Keywords: Security Requirements Engineering, Software Evolution, Entailment Relation

1. Introduction

Software evolution refers to the process of continually updating software systems in response to

changes in their operating environment and their requirements (Lehman and Ramil 2001; Lehman and

Ramil 2003). These changes are often driven by business needs, regulations, and standards to which a

software application is required to continue to satisfy or adapt (Lam and Loomes 1998; Breaux and

Anton 2008). The changes may involve adding new features, removing or modifying existing features

(Keck and Kuehn 1998; Calder et al. 2003), redesigning the system for migration to a new platform, or

integration with other applications. Such changes may result in requirements that were satisfied in a

previous release of an application being violated in its updated version (Ghose 1999; Ghose 2000).

Security requirements engineering deals with the protection of assets from potential threats that may

lead to harm (Haley et al. 2008). This paper observes that current approaches to security requirements

engineering have limited capability for preserving security properties that may be violated as a result of

software evolution. In supporting this argument we review the state-of-the-art in both literatures of

software evolution and security engineering.

In illustrating the need for security requirements engineering approaches to support software evolution,

we consider how the introduction of government regulation that only employees with valid work

permits are allowed to work may affect a standalone payroll system. One way to enforce this

regulation could be introducing a feature that allows a central immigration control system to access

employee database records in the payroll system. Such a change, however, may require migrating the

payroll system to a platform that supports public network access (such as the Internet) where it can

communicate with remote applications. Allowing the immigration control application access to the

payroll implies that immigration officers now have access to private employee data which were only

available with the consent from the individual employees previously. Such evolution of the payroll

system has violated confidentiality (a subclass of security) requirements of employees.

We suggest that one way to address the problem of violating security requirements as result of

evolution is a cross fertilisation of approaches to managing software evolution with security

requirements engineering. As a first step towards achieving this cross fertilisation we propose to use

Jackson and Zave's entailment relation (Zave and Jackson 1997) – which relates requirements, machine

specifications and the environment – as a tool for reasoning about both software evolution and security

requirements engineering. We envisage two benefits of using the entailment relation. Firstly, it is based

on a framework of requirements engineering that allows one to analyse software evolution at a holistic

 2

but finer level of granularity than other approaches in the literature (Lehman and Ramil 2001; Lehman

and Ramil 2003). Secondly, by making context explicit, it allows one to elicit systematically security

vulnerabilities associated with context, which are very often critical (Haley et al. 2008).

We hope that the cross fertilisation leads to an ideal approach to security requirements engineering for

evolving systems. However, we anticipate that such cross fertilisation is non-trivial as it has to strike a

balance between security and evolution. The theme of the challenges is how to design software systems

so that they are both secure and evolvable. Current research in software evolution does not explicitly

address security issues and approaches to security requirements engineering do not provide systematic

means to addressing software evolution concerns. Meeting these challenges is made harder by the fact

that achieving software systems that are both evolvable and secure can be conflicting goals (Nhlabatsi

et al. 2008). One of the key characteristics of software evolution is that in response to new

requirements, new features may be added to existing systems. This mandates composition of the

existing feature set with new features. However, feature composition is non-monotonic (Velthuijsen

1995); that is, properties that were true of an existing system before combination with a new feature,

are not guaranteed to hold after the addition of new functionality.

This paper is structured as follows. In Section 2 we summarise the state of the art on approaches to

understanding and managing requirements evolution. Section 3 reviews approaches to eliciting and

analysing security requirements and presents a comparative evaluation of the extent to which security

requirements engineering approaches support software evolution. A more substantial review of

approaches to software evolution and security requirements engineering is presented in (Nhlabatsi et al.

2009). The main objective of this paper is to identify research challenges that need to be addressed and

to present a research agenda in order to make security requirements engineering for evolving systems

possible. Section 4 discusses these challenges and where possible identifies promising approaches that

could be leveraged to address them, from both software evolution and security requirements

engineering perspectives. Since the context of our work is security requirements engineering, one of

the research challenges we identify concern what software evolution might mean from a requirements

engineering perspective. In addressing these challenges we propose framing security evolution research

within a requirements engineering framework. We conclude the paper in Section 5.

2. Approaches to Software Evolution

Software evolution refers to the process of developing a software system, and continually updating it

due to change in its stakeholder needs and its operating environment (Lehman and Ramil 2001;

Lehman et al. 2002; Lehman and Ramil 2003). Over time software systems tend to increase in size and

complexity. As a result of this increase their maintenance and adaptation becomes more challenging

(Cook et al. 2006). Approaches to the study of software evolution can broadly be classified into two

categories: explanatory and management (Cook et al. 2005). Explanatory approaches take a scientific

view and are concerned with understanding the nature of software evolution. They often study

evolution histories of an application in order to understand how it changed over time (Kemerer and

Slaughter 1999; Anton and Potts 2003; Mens et al. 2004; LaMantia et al. 2008). In contrast

management approaches take an engineering perspective and study the development of better methods

and tools that can be used for managing the effects of software evolution. We summarise both

categories of approaches in the next two subsections.

2.1 Explanatory Approaches

We classify explanatory approaches into two categories based on the type of data they use. The first

category use historical data such as changes in source code over a period of time. Anton and Potts

(Antón and Potts 2001; Anton and Potts 2003) proposed, functional palaeontology, the study of the

functions offered by a system over its lifetime as a basis for understanding or predicting its

evolutionary characteristics. The approach is similar to other approaches that study evolution histories

(His and Potts 2000; Ramil 2002; Ramil and Smith 2002; German 2004; Gîrba and Ducasse 2006;

Barry et al. 2007; Kozlov et al. 2008). Girba and Ducasse (Gîrba and Ducasse 2006) proposed Hlsmo –

a metamodel in which functional evolution history is modelled as an explicit entity. Hlsmo was

motivated by the lack of an explicit meta-model for software evolution analysis. Gall et al. (Gall et al.

1999), Rysselberghe and Demeyer (Rysselberghe and Demeyer 2004), Wu et al. (Wu et al. 2004)

proposed visualisation approaches for understanding software release histories. These approaches

analyse evolution at the source code level (Greevy et al. 2006). Using source code analysis to

 3

understand evolution is necessary but not sufficient in understanding evolution at the requirements

level.

The second category study software evolution by using software trails and functional dependencies.

German (German 2004) proposed a method to recovering and analysing the evolution using software

trails. Software trails refers to information left behind by contributors to the development process of a

software product such as software releases, documentation, version control logs, and websites.

German’s approach takes the software trails as input and reconstructs the evolution of an application.

Fischer and Gall’s (Fischer and Gall 2004) approach to analysing feature evolution examines hidden

dependencies between structurally unrelated features, which over time become coupled. The authors

claim that such hidden feature dependencies must be identified as they may be an indication of

architectural erosion. Architectural erosion refers to any detrimental deviation, with time, of a system’s

architecture from its original design conception (O'Reilly et al. 2003).

2.2 Management Approaches

Zave proposed feature engineering and component architectures as prescriptions for making systems

modular and evolvable (Zave 2003). Feature engineering involves describing features independently,

composing features, detecting, and resolving feature interactions (Turner et al. 1999; Zave 2003).

Component architecture supports feature engineering by providing structural bases on which new

features can be added (Turner 1997; Jackson and Zave 1998; Bond et al. 2004). One approach to

modularisation for evolution is splitting a software system repository into smaller parts (Glorie et al.

2009). The other is viewing an evolutionary system as being a software product line (Pena et al. 2007)

with each successive version being a product.

Over time software architecture ages and this weakens the system’s ability to incorporate new features.

Continuous architecture evaluation (Del Rosso 2006) is one approach to ensuring that the architecture

continues to satisfy its requirements. The inherent complexity of software systems increases their

susceptibility to fragility due to changes induced by unpredictable variations in user needs and the

environment. Capabilities (Ravichandar et al. 2008) have been proposed as a tool for minimizing and

accommodating change. Capabilities are change-tolerant functional abstractions that are foundational

to system functionality and are based on the notion that the basic need for a software solution remains

the same even though the solution may progressively become more refined over time.

Analysing and understanding the impact of change is one of the key problems at the forefront of

software evolution management research (Soffer 2005; Lin et al. 2009). Soffer’s (Soffer 2005) scope

analysis approach determines the extent to which changes to one business process affects other

business processes. However, this approach does not offer a practical method for tracking the impact of

changes to the software systems that support the business process. In addressing this limitation, Lin et

al. (Lin et al. 2009) proposed capturing requirements changes as a series of atomic changes in

specifications and using algorithms to relate changes in requirements to corresponding changes in

specifications.

3. Approaches to Security Requirements Engineering

Security is increasingly considered as a fundamental part of the software development lifecycle and as

a result current research trends suggest that security engineering should be an integral part of software

engineering (Mouratidis et al. 2005; Mouratidis and Giorgini 2006). This is motivated by the notion

that an ad hoc integration of security into a software system that has already been developed has a

negative effect on its maintainability and security. In this section we review approaches to security

requirements engineering. We classify these approaches according to the constructs that they are

founded on, namely: goals-based (3.1) , model-based (3.2), problem-based (3.3), and process-oriented

(3.4) approaches. Our classification is partly based on previous surveys by Tondel et al. (Tondel et al.

2008), Villarroel et al (Villarroel et al. 2005), and Mouratidis and Giorgini (Mouratidis and Giorgini

2006) and partly by our own understanding of the literature in this area.

3.1 Goal-Based Approaches

Goal-oriented approaches to security engineering focus on identifying threats to satisfaction of goals as

the basis for identifying system vulnerabilities. In comparison to low-level requirements, the high-level

abstraction of goals implies that they are more stable than low-level requirements. This makes goals

 4

less likely to change compared to low-level requirements. However, a limitation resulting from this

benefit is that goals may be insufficient for analysing low level security concerns.

Examples of goal-oriented approaches include: KAOS, Secure Tropos, and Secure i*. KAOS (van

Lamsweerde 2004) is an approach to modelling, specifying, and analysing security requirements. The

approach extends an earlier framework on eliciting goals and identifying potential obstacles to

satisfying goals (van Lamsweerde et al. 1998). Recently KAOS has been extended to reasoning about

confidentiality requirements (de Landtsheer and van Lamsweerde 2005). Secure Tropos extends the

Tropos (Mouratidis et al. 2003; Giorgini et al. 2005; Mouratidis et al. 2006) software development

methodology with the ability to explicitly model security concerns such as: security constraints; secure

entities such as trust of permission; and delegation of permission. Secure i* (Liu et al. 2003) is based

on the agent-oriented requirements modelling language i* and analyses security and privacy

requirements by studying the relationships between system stakeholders, potential attackers, and agents

acting on behalf of either attackers or stakeholders.

3.2 Model-Based Approaches

Model-Based approaches are based on the notion that models help requirements analysts in

understanding complex software problems and identifying potential solutions through abstraction

(Fernández-Medina et al. 2009). In this section we review two model-based approaches (UMLsec and

SecureUML). While there may be other model-based approaches aimed at addressing security concerns

in the literature, our focus on these two is purely on a representational basis.

UMLsec (Jurjens 2004) is an extension of UML which allows an application developer to embed

security-related functionality into a system design and perform security analysis on a model of the

system to verify that it satisfies particular security requirements. SecureUML (Lodderstedt et al. 2002)

(another security extension of UML) is focused on modelling access control policies and how these

(policies) can be integrated into a model-driven software development process using role-based access

control (RBAC) as a metamodel for specifying and enforcing security.

3.3 Problem-Oriented Approaches

Problem-oriented approaches (Jackson 1995; Hall et al. 2007; Hall et al. 2008) provide intellectual

tools for analysing, structuring, and understanding software development problems. In this section we

review three problem-oriented approaches, namely: security requirements and trust assumptions (Haley

et al. 2004; Haley et al. 2008), abuse frames (Lin et al. 2003; Lin et al. 2004), and misuse cases

(Alexander 2002; Alexander 2003).

Haley et al.’s (Haley et al. 2008) approach to eliciting, specifying and analysing security requirements

combines concepts from requirements engineering and securing engineering. From a requirements

engineering perspective it uses the concept of functional goals which can be refined into functional

requirements with relevant constraints and from a security engineering perspective, it takes the idea

that security is about protecting assets from harm assets.

Abuse frames (Lin et al. 2003; Lin et al. 2004) extends problem frames (Jackson 2001) to analysing

security problems in order to determine security vulnerabilities. While problem frames are aimed at

analysing the requirements to be satisfied, in contrast, abuse frames are based on the notion of an anti-

requirement - the requirement of a malicious user that can subvert an existing requirement.

Similar to abuse frames, misuse cases are a negative form of use cases (Jacobson 1992) and thus are

use cases from the point of view of an actor hostile to the system (Alexander 2002; Alexander 2003).

They are used for documenting and analysing scenarios in which a system may be attacked.

3.4 Process-Oriented Approaches

Process-oriented approaches focus on the steps for analysing security requirements. The steps may

involve risk analysis for identifying security vulnerabilities and exploration of countermeasures for

addressing identified weaknesses. The Security Quality Requirement Engineering (SQUARE) (Mead

and Stehney 2005) method is used for eliciting, analysing, categorising, prioritising, and documenting

security requirements. Similar to other approaches, the motivation of this method is to enable

requirements analysts to identify security requirements as part of the requirements engineering process

 5

rather than as an after thought. In Georg et al. (Georg et al. 2009) an aspect-oriented approach to

designing secure applications is proposed. The approach models security mechanisms and attack

models as aspects and involves risk analysis, misuse model generation, composed system misuse model

generation, and alternative solution analysis.

3.5 Evaluation of Support for Evolution in Security Requirements Engineering

Security engineering and software evolution, although often conflicting, are intertwined in the sense

that a change in one may affect the other. For example a violation of security goals may result in new

security requirements as countermeasures which in turn lead to an evolution of system functionality.

Likewise, the inevitable evolution of a system may lead to the addition of new functionality which

violates security properties.

In this subsection we make a comparative evaluation of the main characteristics of the security

requirements engineering approaches discussed above. Our evaluation is based on a comparison

criterion that examines support for software evolution in security engineering approaches. Our claim is

that security engineering approaches lack support for software evolution. In order to substantiate this

claim we examined the extent to which current approaches to security requirements engineering

support software evolution. In the rest of this subsection we present our evaluation criteria and results.

Evaluation Criteria: Based on the discussion on software evolution approaches in section 2, we

identified five dimensions for evaluating support of software evolution in security requirements

engineering approaches. These are modularity, component-based architecture, change propagation, and

change impact analysis. We selected the dimensions in the evaluation criteria based on the notion that

change is at the core of software evolution. Our analysis in section 2 seems to suggest that these

dimensions are central to software evolution management (Zave 2003). Thus, we consider them useful

criteria for reasoning about secure software evolution.

Modularisation is a mechanism for enforcing separation of concerns - making it possible to develop

software components independently. Constructs such as features, classes, objects, components, and

aspects are all means to modularisation.

Component-based architectures provide an infrastructure where software modules can be added and

removed with ease (Parsons et al. 2006) by offering mechanisms for component interoperability and

integration which make it possible to extend systems with third party components and hence provide

support for evolution.

When a feature A is dependent on another feature B by way of B providing services to A, then a

change in B may affect A. If B changes while A does not changed accordingly, then assumptions A

make about B may be invalid. A Change Propagation process keeps track of such changes, and help in

guaranteeing that the changes are correctly propagated and that no inconsistent dependency is left

unresolved.

While the change propagation is concerned with recording assessing the ripple effect of changes,

change impact analysis determines what would be affected by a change to a particular artefact (Bohner

2002; Hassine et al. 2005). This involves identifying the artefact to be changed and how other artefacts

that depend on it should be changed. The ripple effects resulting from changing dependent features are

often undesirable as they make it harder to manage change during evolution.

Localisation of change is a mechanism for minimising the resulting ripple effects by ensuring that the

propagation of changes is kept to a minimum and changes in one part of an application do not affect

other parts unnecessarily. In this respect, localisation of change is very similar to modularisation. As a

result, our evaluation treated them as closely related concepts and deemed it sufficient to show the

evaluation results of modularisation only.

Evaluation results: Table 3 presents a comparative evaluation of the security requirements engineering

approaches discussed earlier using the evaluation criterion above. The evaluation of each approach is

based on analysing the characteristics of its core representation, security specific representation,

vulnerability identification technique, and countermeasure techniques to accommodating change. We

evaluate each approach by assigning an integer value in the range 0 to 3. At the lower end, the value 0

 6

implies that an approach offers little or no support for a particular aspect of software evolution. On the

higher end of the scale, the value 3 implies that an approach fully supports the given aspect of

evolution. The text next to evaluation value explains the rationale behind the rating.

Table 3. Evaluation of Support for Software Evolution in Security Requirements Engineering

Approaches
Security Evolution Support

Conceptual
Classification

Security
Approach

Modularisation Component
Architectures

Change
Propagation

Change Impact
Analysis

KAOS(van

Lamsweerde

2004)

2: The

decomposition of

a system into

goals supports

modularity.

0: There is no

explicit support for

component

architectures.

3: A goal model

shows the

relationship

between goals and

hence their

dependencies.

1: There is no explicit

support for change impact

analysis as the focuss is one

identifying threats to

existing goals (rather the

effect of adding new goals)

De Landtsheer

and van

Lamsweed (de

Landtsheer and

van Lamsweerde

2005)

1: Goals are used

as a construct for

modularity

0: There is no

explicit consideration

for component

infrastructures.

3: Dependencies

between goals are

modelled in a goal

model.

1: There is no explicit

support. Focussed on

identifying violation of

confidentiality by existing

goals.

Secure Tropos 1: Although

agents are used

for identifying

attackers, goals

are the main unit

of modularity.

0: Component

infrastructures are

not explicitly

supported.

1: It requires

extension to the

analysis of

dependency

relationships

between agents.

1: There is no explicit

support for analysing the

impact of adding new goals.

Goal-Based

Secure i* 1: same as for

SecureTropos.

0: There is no

explicit support for

component

architectures.

3: Achieved by

modelling

dependencies

between

stakeholders.

2: Although there is support

for analysing the security

impact of existing goals,

there is no explicit support

on how the impact of

adding new goals is

analysed.

UMLsec (Jurjens

2002)

2: Support

dependents on the

OO nature of

UML design

models.

2: Although UMLSec

does not prescribe

architectures, this can

be extended from

UML.

2: Support for

change

propagation also

depends on the

underlying UML

3: Model-Checking and

Theorem proving

techniques are used to

verify the impact of change.

Model-Based

SecureUML

(Lodderstedt et al.

2002)

2: Support

depends on the

component nature

of UML.

2: This is provided

by UML.

2: Same as for

UMLsec

1: There is no explicit

support, although new

functionality can be verified

against authorisation

constraints.

Haley et al.

(Haley et al.

2008)

2: Modules are

represented as

problem

descriptions.

1: Focus is on

eliciting security

requirement rather

how problem can be

composed.

1: There is no

explicit modelling

for dependencies

between functions

3: Argument satisfaction is

used as a way of verifying

that a specification satisfies

a requirement in a given

context.

Abuse Frames

(Lin et al. 2003)

2: Modules are

represented as

problem

descriptions.

1: There is no

explicit support for

this. Depends on the

structure of the

system analysed.

1: There is no

explicit support

for change

propagation.

1: Although there is no

explicit support, change

impact analysis can be

achieved through problem

analysis when new security

problems are identified.

Problem-
Oriented

Misuse Cases

(Alexander 2003)

2: Modules are

use cases.

1: There is no

explicit support for

component

architectures.

0: Focus is on

identifying

potential system

abuses than

interaction

between functions

1: This is not explicit but

this can be extended from

the fact that misuse cases

can be identified from

corresponding use cases.

SQUARE (Mead

and Stehney

2005)

0: There is no

support for

modularity. Focus

is on risk analysis.

0: The approach is

focussed on steps for

risk analysis

independent of the

underlying structure

of the systems

analysed.

3: Risk analysis

identifies

dependencies,

however, not

necessary for

change

propagation.

3: Although, the steps in the

approach are ‘water model’

like rather than iterative, the

approach can be used for

impact analysis.

Process-
Oriented

Georg et al.

(Georg et al.

2009)

2: The aspect is

the construct for

modularity.

1: Aspect weaving

techniques provide a

way to compose

aspects.

3: Aspects

encapsulate cross-

cutting concerns,

hence show

dependency

between

components.

1: Focus is on

encapsulating security

concerns in aspects. There

is no explicit support for

change impact analysis.

Each column in Table 3 three shows the extent to which each security approach supports a given

evolution dimension. It is worth noting, that some approaches to security requirements engineering

approaches discussed seem to provide some limited support for software evolution. For example

KAOS provide good support for change propagation because it is based on goal models which show

 7

explicitly relationships between goals and their dependencies. However, it is very poor in supporting

component architectures. Similarly, although Secure Tropos provides a systematic methodology for

eliciting and analysing security requirements, it does not provide means for propagating changes

between the different models. For instance, if there is a change in a trust of permission model there is

no systematic way of relaying such changes to a delegation of permission model, security constraint

model, or security entities model. A clear interaction relationship between the models would provide a

systematic way of propagating changes between the different models and hence support compliance to

security requirements as systems evolve.

Overall, our evaluation shows that none of the approaches discussed provide sufficient support for

software evolution. By sufficient support we mean addressing all aspects of the dimensions of software

evolution dimensions we have discussed in the evaluation criteria. As a first step towards addressing

this limitation, in the next section, we propose a way of reasoning about software evolution and

security concerns and present a research agenda for security requirements engineering for evolving

systems.

4. A Research Agenda for Security Requirements Engineering for Evolving Systems

In this section we suggest some open research issues and present a research agenda in security

requirements engineering for evolving systems. We frame these issues around challenges in both

software evolution and security requirements engineering, and where possible, highlight some

promising ideas on how the issues arising from the integration of evolution and security engineering

may be addressed. Some of our discussion of the challenges is based on previous works Mens et al.

(Mens et al. 2005) and Mouratidis and Giorgini (Mouratidis and Giorgini 2006). While these works

focussed on software evolution and security engineering, respectively, the theme of our discussion is

how to maintain satisfaction of security requirements while supporting continuous evolution of

software systems.

4.1 Software Evolution from a Requirements Engineering Perspective

A majority of the approaches to software evolution discussed in section 2 are focussed on studying

evolution at the source code level. The stringent nature of security concerns demands a broader but

precise approach to studying secure evolution which enables comprehensive identification of security

vulnerabilities. For this reason we propose an evaluation of the generic concepts of software evolution

from a requirements engineering perspective. More specifically, we examine what software evolution

means in terms of Jackson and Zave’s entailment relation (Zave and Jackson 1997) which describes

software in terms of requirements, specification, and context. In the evaluation we propose to classify

approaches to software evolution according to whether they view evolution as change in requirements,

specification, or context. In doing so we hope to clarify what secure software evolution means in

requirements engineering. More importantly, the entailment relation allows us to reason about both

security and software evolution at a finer level of granularity. Thus we propose it as a tool for cross-

fertilising the areas of software evolution and security engineering and to reason about security

engineering for evolving security systems.

Jackson and Zave’s Entailment Relation: The entailment relation relates three sets of descriptions:

requirements (R), domain assumptions (W), and specifications (S). It states that a specification satisfies

a requirement given that some assumptions about the behaviour of the context hold (formally, S, W |-

R, where “|-“ denotes entailment). A requirement describes a condition or capability that must be met

or possessed by a system. Requirements are optative descriptions in that they described how the world

would be once the envisioned system is in place. For an electronic stability programme (ESP) feature in

a car this could be: ‘avoid vehicle skidding when brakes are applied’. Domain assumptions describe

facts about the behaviour of the environment where a system will be deployed. In this paper we use the

term context to refer to the environment described in domain assumptions. In contrast to requirements,

domain descriptions are indicative in that they describe objective truth about the context. In the ESP

example this could be: ‘applying brakes continuously cause tires to lock’, ‘tires are mounted on the

vehicle’s chassis’, and ‘locked tires lead to vehicle skidding’. Specifications then describe how the

system should behave in order to satisfy the conditions described in R, given that the assumptions

described in W hold. The specification for the ESP could be: “if tire lock occurs during braking, apply

and release braking pressure at short discrete periodic intervals’.

 8

Evolution as Change in Context: The operating environment or context of an application plays an

important role in its evolution as the design of a software system makes assumptions about the

environment in which it will operate (Del Rosso 2006; Gerdes 2009). This is especially true for

embedded systems (Chung and Subramanian 2003). Examples of contextual changes include

government regulations (Breaux and Anton 2008), business process models (Soffer 2005; Ibrahim et

al. 2008), platforms (Gerdes 2009), anomalies observed in the operation of an application resulting

from incompleteness of requirements and hardware failures or limitations which were not considered

initially (Lutz and Mikulski 2003) and software bugs (Wang et al. 2006), and inconsistencies between

requirements (Russo et al. 1998; van Lamsweerde et al. 1998; Nuseibeh et al. 2000; Felty and

Namjoshi 2003). Changes in context may lead to software evolution and such contextual changes are

translated into new requirements that an application has to satisfy in order to remain relevant and

effective in its environment (Lam and Loomes 1998). Therefore evolutionary changes in context may

eventually be translated into new requirements and hence ‘evolution as change in context’ results in

requirements evolution. It worth noting that an application does not only evolve to satisfy new

requirements imposed by changes in context but may also evolve to take advantage of new features

available in the context. For example, windows application have introduced new functionality in

response to availability of novel features as the Windows operating system evolved (Hsi and Potts

2000).

Evolution as Change in Specifications: Research in software evolution has traditionally focussed on

changes in source code (Mens et al. 2002; German 2004; Zenger 2005; Ren et al. 2006; Antonellis et

al. 2009) and software architecture (Chung and Subramanian 2003; Roshandel et al. 2004; Del Rosso

2006; LaMantia et al. 2008) as prime variables of system evolution. This has led to techniques such as

program refactoring (Kosker et al.; Smith and McComb 2008; da Silva et al. 2009) and architectural

configuration management systems (Roshandel et al. 2004). In this paper we consider software

architectures and code as solutions that are designed to satisfy requirements of an application. Hence

we classify them as specifications. While changes in context may lead to new requirements or to

changes in existing requirements, in contrast, evolution of specifications is driven by changes in

requirements (Ghose 1999) and as such does not always lead to evolution in requirements. An

illustration of this point is code refactoring – where the structure of program code may be changed

without changing business logic. On the other hand, a change in a requirement often results in a change

in business logic (Zowghi and Offen 1997; Russo et al. 1999; Fabbrini et al. 2007).

Evolution as Change in Requirements: In recent years, researchers in software evolution have turned

their attention to changes in stakeholder needs (expressed as requirements) as one of the drivers of

software evolution (Zowghi and Offen 1997; d'Avila Garcez et al. 2003; Seybold et al. 2004; Hassine

et al. 2005). Several approaches have been proposed for supporting requirements evolution. Zowgi and

Offen (Zowghi and Offen 1997) proposed modelling and reasoning about the evolution of requirements

using meta level logic for formally capturing intuitive aspects of managing changes to requirements

models. Russo et al.’s (Russo et al. 1999) proposed restructuring requirements to facilitate

inconsistency detection and change management. While, Garcez et al.’s (d'Avila Garcez et al. 2003)

approach combines abductive reasoning and inductive learning for evolving requirements

specifications. Other notable approaches include Fabrinni et al.’s (Fabbrini et al. 2007) approach to

controlling requirements evolution using formal concept analysis; Ghose’s (Ghose 1999) framework

formal approach for addressing the problem of requirements inconsistencies resulting from evolution;

Lam and Loomes (Lam and Loomes 1998) meta and a process model approach; and Brier et al.’s

(Brier et al. 2006) approach to capturing, analysing, and understanding how software systems adapt to

changing requirements in an organisational context.

A Secure Evolution Framework: Software systems evolve with changing user needs and changes in

their environment. Changes in the context of a system may lead to new requirements or modification of

existing requirements. One the other hand, evolution in specifications does not always result in a

corresponding evolution in requirements. This is due to the notion that requirements state stakeholder

needs or the problems to be solved, while specifications describe the behaviour of software solutions

that could satisfy the requirements. As a result the abstract problem stated as a requirement may remain

the same even though its solutions may get progressively refined due to changes in context such as

introduction of novel technologies. We envisage that the observations from our discussion may have

important implications for research in secure software evolution. The main implication concerns

approaches to secure change impact analysis. For example the observation that changing requirements

 9

may lead to changing specifications could lead to a framework for understanding the impact of changes

and traceability of the changes through artefacts in both requirements and specifications.

Figure 1. Software Evolution through Entailment Relation

Similarly, such a change impact analysis framework could also be useful for analysing what impact

changes in context may have on requirements and specifications. The change impact framework can be

validated by doing more research on what the interaction is between the changes in the three elements

of the entailment relation as illustrated in Figure 1. The arrows labelled a and b represents how changes

in requirements impact context and how context evolution impact requirements evolution, respectively.

Similarly, the arrows labelled c and d represent the impact of requirements evolution on specification

evolution and impact of specification evolution on requirements, respectively. Arrow e represent the

impact of changes in specification on context, meanwhile arrow f represents the impact of changes in

context on specifications.

4.2 Designing Change Tolerant Software Systems

Changing user needs induce new requirements and technological advances may require a change in the

context of an application. Evolution of an application is inevitable and software systems often break

due to changes resulting from evolution. There is need for an approach to designing software systems

in such a way that they can tolerate change, that is, they are evolvable and their evolution does not lead

to failure.

Promising approaches to designing change tolerant systems include: Ravichandar et al.’s (Ravichandar

et al. 2008) capabilities-based approach to designing change tolerant systems; Zave’s (Zave 2001)

feature-based and component-centric architecture approach to evolving software systems; Zowghi

(Zowghi and Offen 1997) approach to modelling and reasoning about requirements evolution; and

Garcez et al. (d'Avila Garcez et al. 2003) to evolving specifications. Another promising approach is

described in Shin and Gomaa (Shin and Gomaa 2007). The approach models the evolution of non-

secure applications into secure applications in terms of the software requirements model and software

architecture model. Security requirements are captured separately from functional requirements and it

is claimed that this separation makes possible to achieve the evolution from a non-secure application to

a secure application with less impact on the application.

4.3 Non-Monotonicity of Software Evolution

Achieving systems that are secure and evolvable is a hard goal because software evolution and security

are conflicting goals (Nhlabatsi et al. 2008). One of the key characteristics of software evolution is that

in response to new requirements, new features may be added to legacy systems. This mandates

composition of the existing feature set with new features. However, feature composition is non-

monotonic (Velthuijsen 1995) due to the feature interactions problem (Keck and Kuehn 1998). A

system is said to be Non-monotonic if it does not guarantee that properties that held prior to addition of

new functionality will continue to hold after the functionality has been added (Hall 2000).

Since software evolution involves the composition of existing features with new features, and feature

composition is non-monotonic, then software evolution is intrinsically a non-monotonic activity.

Therefore, one of the important challenges for security engineering for evolving systems is how to

balance between the inevitable need for supporting continuous software evolution and the goal of

designing systems which ensure that security requirements that held initially (and need to continue

holding) are not violated by the addition of new functionality. This challenge can be summarised as

follows: can continuous software evolution co-exist with stringent security requirements and how can

f
e

b

d

Requirements Evolution

Specification Evolution a

c

Context Evolution

 10

this be achieved through sound design principles, methods, languages, and tools? How can

vulnerabilities resulting from the addition of new features be minimized?

Garcez et al (d'Avila Garcez et al. 2003) approach of analysis and change holds some promise as it

makes it possible for systems to be evolved in such a manner that allows the satisfaction of desirable

requirements to be checked at the end of an evolution cycle. At its present state, this approach allows

for the violation of security properties and then evolving the specification to remove the violation. This

is not a desirable characteristic especially in cases where the effects of the violation of a security

requirement can not be reversed. An interesting challenge is how this approach (other similar

approaches) could be modified such that evolutionary changes are only permitted only if the

implication of any resulting violation to security requirements is minimal. This may involve taking into

account the physical context of operation. This could be achieved by combining a analysis and revision

approaches with problem-oriented approaches security requirements engineering (such as those

proposed by Haley et al. (Haley et al. 2008) and Salifu et al. (Salifu et al. 2007)), and incorporating

promising results from secure software composition (Focardi and Gorrieri 1997; Mantel 2001; Mantel

2002; Francesco and Lettieri 2003; Bartoletti et al. 2005; Bartoletti et al. 2008).

4.4 Security for Evolving Adaptive Software

Adaptive applications have to maintain satisfaction of requirements despite changes in their operating

conditions (Salifu et al. 2007). Designing adaptive systems involves analysing possible variations in

their context of operation and specifying behaviours in advance that would enable the system to

maintain satisfaction of its requirements despite changes in context. Besides the repository of

behaviours corresponding to different contexts, adaptive systems are also equipped with mechanisms

for monitoring their context and switch between behaviours in response to contextual changes.

Evolutionary changes in a context-ware application are often driven by the introduction of a new

context of operation that had not been considered initially. This makes it necessary to specify new

behaviours to enable the application to continue to operate in the new context and a specification of

variables to be monitored in the new context.

Research in context-ware systems is relatively new. As a result current approaches to managing

software evolution are focussed on systems that do not need to change their behaviour with changes in

context. We envisage that the adaptive and dynamic nature of context-ware applications brings to fore

additional concerns and challenges for both software evolution and security engineering. In software

evolution one of the important research issues is whether the approaches proposed for managing

evolution in none context-ware systems can be applied to context aware systems. There are at least two

perspectives from which software evolution in an adaptive environment can studied. One concern

involves evolution of system behaviour with changing context. The other relates to evolution in terms

of new behaviour introduced to an application due to new context that was not considered initially. It is

worth investigating the interaction between these perspectives of evolution and the security concerns

they may raise.

An even harder challenge of security and evolution in adaptive systems is online software evolution

(Wang et al. 2006), which is a kind of software evolution that updates running programs without

interruption of their execution. Evolution for such systems is dynamic and often has to be completed in

relatively short time limits. This timing constraint raises at least two concerns. (1) How can the

correctness of evolved software be verified? Current approaches to verification are based on model

checking and theorem proofing (Felty and Namjoshi 2003; Giannakopoulou and Magee 2003; Letier et

al. 2005; Calder and Miller 2006). Both of these verification techniques are resource intensive

operations and often take long to complete. (2) If the event that the online evolution fails, can the

evolution be rolled back? What are the implications of such roll back on security properties?

5. Conclusion

Software systems evolve in response to changes in their operating environment and requirements. Such

evolution often violates security requirements. We have reviewed the state-of-the-art in security

engineering and concluded that current approaches to security engineering do not address the problem

of preserving security properties that may be violated as a result of software evolution.

 11

This paper suggested that one approach to addressing this problem of preserving security properties is a

cross fertilisation of approaches to managing software evolution in security engineering. We termed

this as security requirements engineering for evolving systems. We have identified and discussed open

research issues and challenges that may need to be addressed in order to achieve the goal of security

engineering for evolving software systems. One of the main challenges we have identified is the need

for an approach for reasoning about both software evolution and security engineering. To this end, we

suggested Jackson and Zave’s entailment relation as a basis for analysing secure system evolution at a

finer level of granularity.

Other challenges we identified are designing change tolerant software systems, non-monotonicity of

evolving software systems and secure evolution for adaptive software. In some cases we have

discussed promising research directions on how the identified open issues could be addressed. We hope

that the research agenda we have set will pave the way for investigating key research problems in

security requirements engineering for evolving software systems.

References

Alexander, I. (2002). Initial industrial experience of misuse cases in trade-off analysis. in Proceedings of IEEE

Joint International Conference on Requirements Engineering (pp. 61-68),

Alexander, I. (2003). Misuse cases: use cases with hostile intent. IEEE Software, 20(1), 58-66.

Anton, A. I. and C. Potts (2003). Functional Paleontology: The Evolution of User-Visible System Services. IEEE

Transactions on Software Engineering, 29(2), 151-166.

Antón, A. I. and C. Potts (2001). Functional Paleontology: System Evolution as the User Sees It. in 23rd

International Conference on Software Engineering (ICSE'01) (pp. 421 - 430),

Antonellis, P., D. Antoniou, Y. Kanellopoulos, C. Makris, E. Theodoridis, C. Tjortjis and N. Tsirakis (2009).

Clustering for Monitoring Software Systems Maintainability Evolution. Electronic Notes in Theoretical Computer

Science, 233, 43-57.

Barry, E. J., C. F. Kemerer and S. A. Slaughter (2007). How software process automation affects software

evolution: a longitudinal empirical analysis. Journal of Software Maintenance and Evolution: Research and

Practice, 19(1), 1-31.

Bartoletti, M., P. Degano and G. L. Ferrari (2005). Enforcing secure service composition. in 18th IEEE Workshop

Computer Security Foundations (pp. 211-223),

Bartoletti, M., P. Degano, G. L. Ferrari and R. Zunino (2008). Semantics-Based Design for Secure Web Services.

IEEE Transactions on Software Engineering, 34(1), 33-49.

Bohner, S. A. (2002). Software change impacts-an evolving perspective. in Proceedings of International

Conference on Software Maintenance (pp. 263-272),

Bond, G. W., E. Cheung, K. H. Purdy, P. Zave and C. Ramming (2004). An Open Architecture for Next-

Generation Telecommunication Services. ACM Transactions on Internet Technology (TOIT), 4(1), 83-123.

Breaux, T. D. and A. I. Anton (2008). Analyzing Regulatory Rules for Privacy and Security Requirements. IEEE

Transactions on Software Engineering, 34(1), 5-20.

Brier, J., L. Rapanotti and J. G. Hall (2006). Problem-based analysis of organisational change: a real-world

example. in Proceedings of the 2006 international workshop on Advances and applications of problem frames

(pp. 13-18), Shanghai, China, ACM.

Calder, M., M. Kolberg, E. Magill and S. Reiff-Marganiec (2003). Feature interaction: A critical review and

considered forecast. Computer Networks, 41(1), 115-141.

Calder, M. and A. Miller (2006). Feature interaction detection by pairwise analysis of LTL properties: a case

study. Formal Methods in System Design, 28(3), 213-261.

Chung, L. and N. Subramanian (2003). Architecture-based semantic evolution of embedded remotely controlled

systems. Journal of Software Maintenance and Evolution: Research and Practice, 15(3), 145-190.

Cook, S., R. Harrison, M. M. Lehman and P. Wernick (2005). Evolution in software systems: foundations of the

SPE classification scheme. Journal of Software Maintenance and Evolution: Research and Practice, 18(1), 1-35.

Cook, S., R. Harrison, M. M. Lehman and P. Wernick (2006). Evolution in software systems: foundations of the

SPE classification scheme. Journal of Software Maintenance and Evolution: Research and Practice, 18(1), 1-35.

da Silva, B. C., E. Figueiredo, A. Garcia and D. Nunes (2009). Refactoring of Crosscutting Concerns with

Metaphor-Based Heuristics. Electronic Notes in Theoretical Computer Science, 233, 105-125.

d'Avila Garcez, A. S., A. Russo, B. Nuseibeh and J. Kramer (2003). Combining abductive reasoning and inductive

learning to evolve requirements specifications. IEE Proceedings Software, 150(1), 25-38.

de Landtsheer, R. and A. van Lamsweerde (2005). Reasoning about confidentiality at requirements engineering

time. In Proceedings of the 10th European software engineering conference (pp. 41-49). Lisbon, Portugal:ACM.

 12

Del Rosso, C. (2006). Continuous evolution through software architecture evaluation: a case study. Journal of

Software Maintenance and Evolution: Research and Practice, 18(5), 351-383.

Fabbrini, F., M. Fusani, S. Gnesi and G. Lami (2007). Controlling Requirements Evolution: a Formal Concept

Analysis-Based Approach. in International Conference on Software Engineering Advances (pp. 68),

Felty, A. P. and K. S. Namjoshi (2003). Feature specification and automated conflict detection. ACM Transactions

on Software Engineering and Methodology (TOSEM), 12(1), 3 - 27.

Fernández-Medina, E., J. Jurjens, J. Trujillo and S. Jajodia (2009). Model-Driven Development for secure

information systems. Information and Software Technology, 51(5), 809-814.

Fischer, M. and H. Gall (2004). Visualizing feature evolution of large-scale software based on problem and

modification report data. Journal of Software Maintenance and Evolution: Research and Practice, 16(6), 385-

403.

Focardi, R. and R. Gorrieri (1997). The Compositional Security Checker: a tool for the verification of information

flow security properties. IEEE Transactions on Software Engineering, 23(9), 550-571.

Francesco, N. D. and G. Lettieri (2003). Checking security properties by model checking. Software Testing,

Verification and Reliability, 13(3), 181-196.

Gall, H., M. Jazayeri and C. Riva (1999). Visualizing Software Release Histories: The Use of Color and Third

Dimension. in Proceedings of the IEEE International Conference on Software Maintenance (pp., IEEE Computer

Society Washington, DC, USA.

Georg, G., I. Ray, K. Anastasakis, B. Bordbar, M. Toahchoodee and S. H. Houmb (2009). An aspect-oriented

methodology for designing secure applications. Information and Software Technology, 51(5), 846-864.

Gerdes, J. (2009). User Interface Migration of Microsoft Windows Applications. Journal of Software Maintenance

and Evolution: Research and Practice, 9999(9999), n/a.

German, D. M. (2004). Using software trails to reconstruct the evolution of software. Journal of Software

Maintenance and Evolution: Research and Practice, 16(6), 367-384.

Ghose, A. K. (1999). A formal basis for consistency, evolution and rationale management in requirements

engineering. in 11th IEEE International Conference on Tools with Artificial Intelligence (pp. 77-84),

Ghose, A. K. (2000). Formal tools for managing inconsistency and change in RE. in 10th International Workshop

on Software Specification and Design (pp. 171-181),

Giannakopoulou, D. and J. Magee (2003). Fluent model checking for event-based systems. In Proceedings of the

9th European Software Engineering Conference (pp. 257-266). Helsinki, Finland:ACM Press.

Giorgini, P., F. Massacci, J. Mylopoulos and N. Zannone (2005). Modeling security requirements through

ownership, permission and delegation. in Proceedings of 13th IEEE International Conference on Requirements

Engineering (pp. 167-176), Paris, France

Gîrba, T. and S. Ducasse (2006). Modeling history to analyze software evolution. Journal of Software

Maintenance and Evolution: Research and Practice, 18(3), 207-236.

Glorie, M., A. Zaidman, A. v. Deursen and L. Hofland (2009). Splitting a large software repository for easing

future software evolution - an industrial experience report. Journal of Software Maintenance and Evolution:

Research and Practice, 21(2), 113-141.

Greevy, O., S. Ducasse and Tudor Gîrba (2006). Analyzing software evolution through feature views. Journal of

Software Maintenance and Evolution: Research and Practice, 18(6), 425-456.

Haley, C. B., R. Laney, J. D. Moffett and B. Nuseibeh (2008). Security Requirements Engineering: A Framework

for Representation and Analysis. IEEE Transactions on Software Engineering, 34(1), 133-153.

Haley, C. B., R. C. Laney, J. D. Moffett and B. Nuseibeh (2004). The effect of trust assumptions on the elaboration

of security requirements. in 12th IEEE International Requirements Engineering Conference (pp. 102-111),

Hall, J. G., L. Rapanotti and M. Jackson (2007). Problem Oriented Software Engineering: A design-theoretic

framework for software engineering. in 5th IEEE International Conference on Software Engineering and Formal

Methods (pp. 15-24),

Hall, J. G., L. Rapanotti and M. A. Jackson (2008). Problem Oriented Software Engineering: Solving the Package

Router Control Problem. IEEE Transactions on Software Engineering, 34(2), 226-241.

Hall, R. J. (2000). Feature combination and interaction detection via foreground/background models. Journal of

Computer Networks, 32(4), 449-469.

Hassine, J., J. Rilling, J. Hewitt and R. Dssouli (2005). Change impact analysis for requirement evolution using

use case maps. in 8th International Workshop on Principles of Software Evolution (pp. 81-90),

Hsi, I. and C. Potts (2000). Studying the Evolution and Enhancement of Software Features. in Proceedings of the

16th IEEE International Conference on Software Maintenance (pp. 143-151), San Jose, California, USA

Ibrahim, N., W. M. N. Wan Kadir and S. Deris (2008). Comparative Evaluation of Change Propagation

Approaches towards Resilient Software Evolution. in 3rd International Conference on Software Engineering

Advances (pp. 198-204),

Jackson, M. (1995). Software Requirements and Specifications: A Lexicon of Practice, Principles and Prejudices.

London, United Kingdom, Addison-Wesley.

 13

Jackson, M. (2001). Problem frames : analysing and structuring software development problems. Harlow,

Addison-Wesley, 2001.

Jackson, M. and P. Zave (1998). Distributed Feature Composition: A Virtual Architecture for Telecommunications

Services. IEEE Transactions on Software Engineering, 24(10), 831-847.

Jacobson, I. (1992). Object Oriented Software Engineering: A Use Case Driven Approach, Addison-Wesley

Professional.

Jurjens, J. (2002). UMLsec: Extending UML for Secure Systems Development. in Proceedings of the 5th

International Conference on The Unified Modeling Language (pp. 412-425), Springer-Verlag.

Jurjens, J. (2004). Secure Systems Development with UML. Heidelberg, German, Springer-Verlag.

Keck, D. O. and P. J. Kuehn (1998). The Feature and Service Interaction Problem in Telecommunications

Systems: A Survey. IEEE Transactions on Software Engineering, 24(10), 779-796.

Kemerer, C. F. and S. Slaughter (1999). An Empirical Approach to Studying Software Evolution. IEEE

Transactions on Software Engineering, 25(4), 493 - 509.

Kosker, Y., B. Turhan and A. Bener An expert system for determining candidate software classes for refactoring.

Expert Systems with Applications, In Press, Corrected Proof.

Kozlov, D., J. Koskinen, M. Sakkinen and J. Markkula (2008). Assessing maintainability change over multiple

software releases. Journal of Software Maintenance and Evolution: Research and Practice, 20(1), 31-58.

Lam, W. and M. Loomes (1998). Requirements evolution in the midst of environmental change: a managed

approach. in 2nd Euromicro Conference on Software Maintenance and Reengineering (pp. 121-127),

LaMantia, M. J., Y. Cai, A. MacCormack and J. Rusnak (2008). Analyzing the Evolution of Large-Scale Software

Systems Using Design Structure Matrices and Design Rule Theory: Two Exploratory Cases. In Proceedings of the

Seventh Working IEEE/IFIP Conference on Software Architecture (WICSA 2008) (pp. 83-92).IEEE Computer

Society.

Lehman, M. M., G. Kahen and J. F. Ramil (2002). Behavioural modelling of long-lived evolution processes - some

issues and an example. Journal of Software Maintenance and Evolution: Research and Practice, 14(5), 335-351.

Lehman, M. M. and J. F. Ramil (2001). Evolution in software and related areas. In Proceedings of the 4th

International Workshop on Principles of Software Evolution (pp. 1-16). Vienna, Austria:ACM.

Lehman, M. M. and J. F. Ramil (2003). Software evolution: background, theory, practice. Information Processing

Letters, 88(1-2), 33-44.

Letier, E., J. Kramer, J. Magee and S. Uchitel (2005). Fluent temporal logic for discrete-time event-based models.

SIGSOFT Softw. Eng. Notes, 30(5), 70-79.

Lin, L., B. Nuseibeh, D. Ince and M. Jackson (2004). Using abuse frames to bound the scope of security problems.

in Proceedings of 12th IEEE International Requirements Engineering Conference (pp. 354-355),

Lin, L., B. Nuseibeh, D. Ince, M. Jackson and J. Moffett (2003). Introducing abuse frames for analysing security

requirements. in Proceedings of 11th IEEE International Requirements Engineering Conference (pp. 371-372),

Lin, L., S. J. Prowell and J. H. Poore (2009). The impact of requirements changes on specifications and state

machines. Software: Practice and Experience, 39(6), 573-610.

Liu, L., E. Yu and J. Mylopoulos (2003). Security and privacy requirements analysis within a social setting. in

11th IEEE International Requirements Engineering Conference (pp. 151-161),

Lodderstedt, T., D. Basin and J. Doser (2002). SecureUML: A UML-Based Modeling Language for Model-Driven

Security. In «UML» 2002: The Unified Modeling Language (pp. 426-441).

Lutz, R. R. and I. C. Mikulski (2003). Operational anomalies as a cause of safety-critical requirements evolution.

Journal of Systems and Software, 65(2), 155-161.

Mantel, H. (2001). Preserving information flow properties under refinement. in IEEE Symposium on Security and

Privacy (pp. 78-91),

Mantel, H. (2002). On the composition of secure systems. in IEEE Symposium on Security and Privacy (pp. 88-

101),

Mead, N. R. and T. Stehney (2005). Security quality requirements engineering (SQUARE) methodology.

SIGSOFT Software Engineering Notes, 30(4), 1-7.

Mens, K., T. Mens and M. Wermelinger (2002). Supporting software evolution with intentional software views. In

Proceedings of the International Workshop on Principles of Software Evolution (pp. 138-142). Orlando,

Florida:ACM.

Mens, T., J. F. Ramil and M. W. Godfrey (2004). Analyzing the Evolution of Large-Scale Software. Journal of

Software Maintenance and Evolution: Research and Practice, 16(6), 363 - 365.

Mens, T., M. Wermelinger, S. Ducasse, S. Demeyer, R. Hirschfeld and M. Jazayeri (2005). Challenges in software

evolution. in 8th International Workshop on Principles of Software Evolution (pp. 13-22),

Mouratidis, H. and P. Giorgini (2006). Integrating Security and Software Engineering: Advances and Future

Visions. London, United Kingdom, Idea Group Publishing.

Mouratidis, H., P. Giorgini and G. Manson (2003). Modelling secure multiagent systems. In Proceedings of the

2nd international joint conference on Autonomous agents and multiagent systems (pp. 859-866). Melbourne,

Australia:ACM.

 14

Mouratidis, H., P. Giorgini and G. Manson (2005). When security meets software engineering: a case of modelling

secure information systems. Information Systems, 30(8), 609-629.

Mouratidis, H., J. Jurjens and J. Fox (2006). Towards a Comprehensive Framework for Secure Systems

Development. In Advanced Information Systems Engineering (pp. 48-62).

Nhlabatsi, A., R. Laney and B. Nuseibeh (2008). Feature Interaction: the Security Threat from within Software

Systems. Progress in Informatics(5), 75-89.

Nhlabatsi, A., B. Nuseibeh and Y. Yu (2009). Security Requirements Engineering for Evolving Software Systems:

a Survey. The Open University, Milton Keynes

Nuseibeh, B., S. Easterbrook and A. Russo (2000). Leveraging Inconsistency in Software Development.

Computer, 33(4), 24-29.

O'Reilly, C., P. Morrow and D. Bustard (2003). Lightweight prevention of architectural erosion. in Proceedings of

6th International Workshop on Principles of Software Evolution (pp. 59-64),

Parsons, D., A. Rashid, A. Telea and A. Speck (2006). An architectural pattern for designing component-based

application frameworks. Software: Practice and Experience, 36(2), 157-190.

Pena, J., M. G. Hinchey, M. Resinas, R. Sterritt and J. L. Rash (2007). Designing and managing evolving systems

using a MAS product line approach. Science of Computer Programming, 66(1), 71-86.

Ramil, J. F. (2002). Laws of software evolution and their empirical support. in International Conference on

Software Maintenance (pp. 71),

Ramil, J. F. and N. Smith (2002). Qualitative simulation of models of software evolution. Software Process:

Improvement and Practice, 7(3-4), 95-112.

Ravichandar, R., J. D. Arthur, S. A. Bohner and D. P. Tegarden (2008). Improving change tolerance through

Capabilities-based design: an empirical analysis. Journal of Software Maintenance and Evolution: Research and

Practice, 20(2), 135-170.

Ren, X., O. C. Chesley and B. G. Ryder (2006). Identifying Failure Causes in Java Programs: An Application of

Change Impact Analysis. IEEE Transactions on Software Engineering, 32(9), 718-732.

Roshandel, R., A. V. D. Hoek, M. Mikic-Rakic and N. Medvidovic (2004). Mae - a system model and

environment for managing architectural evolution. ACM Transactions in Software Engineering Methodology,

13(2), 240-276.

Russo, A., B. Nuseibeh and J. Kramer (1998). Restructuring requirements Specifications for Managing

Inconsistency and Change: A Case Study. in Proc. of 3 rd International Conference on Requirements Engineering

(ICRE `98) (pp. 51-61), Colorado Springs, USA

Russo, A., B. Nuseibeh and J. Kramer (1999). Restructuring requirements specifications. IEE Proceedings

Software, 146(1), 44-53.

Rysselberghe, F. V. and S. Demeyer (2004). Studying Software Evolution Information by Visualizing the Change

History. in Proceedings of the 20th IEEE International Conference on Software Maintenance (pp. 328-337),

Salifu, M., Y. Yu and B. Nuseibeh (2007). Specifying Monitoring and Switching Problems in Context. in

Proceedings of the 15th IEEE International Conference in Requirements Engineering (RE '07) (pp. 211-220), New

Delhi, India

Seybold, C., S. Meier and M. Glinz (2004). Evolution of requirements models by simulation. in Procedings of 7th

International Workshop on Principles of Software Evolution (pp. 43-48),

Shin, M. E. and H. Gomaa (2007). Software requirements and architecture modeling for evolving non-secure

applications into secure applications. Science of Computer Programming, 66(1), 60-70.

Smith, G. and T. McComb (2008). Refactoring Real-time Specifications. Electronic Notes in Theoretical

Computer Science, 214, 359-380.

Soffer, P. (2005). Scope analysis: identifying the impact of changes in business process models. Software Process:

Improvement and Practice, 10(4), 393-402.

Tondel, I. A., M. G. Jaatun and P. H. Meland (2008). Security Requirements for the Rest of Us: A Survey. IEEE

Software, 25(1), 20-27.

Turner, C. R., A. Fuggetta, L. Lavazza and A. L. Wolf (1999). A Conceptual basis for feature engineering. The

Journal of Systems and Software, 49(1), 3-15.

Turner, K. J. (1997). An Architectural Foundation for Relating Features. in Proceedings of Feature Interactions in

Telecommunication Networks IV (pp. 226-241), Amsterdam, IOS Press.

van Lamsweerde, A. (2004). Elaborating security requirements by construction of intentional anti-models. in 26th

International Conference on Software Engineering (pp. 148-157),

van Lamsweerde, A., R. Darimont and E. Letier (1998). Managing conflicts in goal-driven requirements

engineering. IEEE Transactions on Software Engineering, 24(11), 908-926.

Velthuijsen, H. (1995). Issues of non-monotonicity in feature interaction detection. In Feature Interactions in

Telecommunication Systems III (pp. 31-42). Amsterdam:IOS Press.

Villarroel, R., E. Fernández-Medina and M. Piattini (2005). Secure information systems development - a survey

and comparison. Computers & Security, 24(4), 308-321.

 15

Wang, Q., J. Shen, X. Wang and H. Mei (2006). A component-based approach to online software evolution.

Journal of Software Maintenance and Evolution: Research and Practice, 18(3), 181-205.

Wu, J., R. C. Holt and A. E. Hassan (2004). Exploring Software Evolution Using Spectrographs. 11th Working

Conference on Reverse Engineering, 80-89.

Zave, P. (2001). Requirements for Evolving Systems: A Telecommunications Perspective. in Proceedings of 5th

IEEE International Symposium on Requirements Engineering (RE'01) (pp. 2-9), Toronto, Canada, IEEE Computer

Society.

Zave, P. (2003). An experiment in feature engineering. Programming methodology: Monographs In Computer

Science, 353 - 377.

Zave, P. and M. Jackson (1997). Four dark corners of requirements engineering. ACM Transactions on Software

Engineering and Methodology, 6(1), 1-30.

Zenger, M. (2005). KERIS: evolving software with extensible modules. Journal of Software Maintenance and

Evolution: Research and Practice, 17(5), 333-362.

Zowghi, D. and R. Offen (1997). A logical framework for modeling and reasoning about the evolution of

requirements. in 3rd IEEE International Symposium on Requirements Engineering (pp. 247-257),

